

SECTION II: JAVA SERVLETS
Working With Databases

A DBMS forms an integral part of any application. It is hard to find a web or enterprise
application today that does not have some sort of database connectivity. A lot of applications
developed in Java EE environment are dependent on a database that stores information that
the application uses. For example:

 Search engine use databases to store information, which they have extracted from web
pages

 Websites that earn their cash flows from E-commerce use databases that store
information about their products, customers and orders

 Geo-imaging sites provide those who access them, photographic images of the world
from space, use databases to store these images captured by a satellite using high
definition cameras

Working with database using Java is very simple as Java supports various database systems.
Java has an API called JDBC API which allows working with databases. The JDBC API is
industrially accepted for database-independent connectivity between the Java programming
language and a wide variety of databases and other tabular data sources.

Chapter

8

126 Java EE 6 Server Programming For Professionals

JDBC API technology defines the Write Once, Run Anywhere paradigm for applications that
require access to enterprise data.

What Is JDBC?

In 1996, JavaSoft, released its first version of the JDBC kit. JDBC stands for Java DataBase
Connectivity. This is actually an API, which consists of a set of Java classes, interfaces and
exceptions designed to perform actions against any database.

Applications developed with Java and JDBC are platform and database vendor independent
i.e. the same Java program can run on a PC, a workstation or a network computer and can
connect to any vendor's DBMS simply by changing the JDBC middleware.

JDBC is today a mature and well-accepted table data, access and standard.

JDBC Drivers

Applications written using the JDBC API communicate with a JDBC driver manager, which
uses driver specifically loaded to communicate with the DB engine.

RDBMS [Relational DataBase Management Systems] or third-party vendors develop
database specific drivers. Application developers use these drivers in their applications, to
access appropriate database tables.

RREEMMIINNDDEERR

This book focuses on MySQL as the database of choice hence MySQL
Connector/J will be used as the JDBC driver to access the MySQL database.

The latest release of JDBC technology i.e. JDBC 4.0 API provides access to non-database
tabular sources of data such as spreadsheets and flat files.

Developers use these drivers to develop applications, which access the respective databases.
The JDBC application developers can easily replace one driver for their application with
another better one without having to alter the application as the drivers are adhered to JDBC
specification. If some proprietary API provided by some RDBMS vendor is used for
developing Java applications, it becomes mandatory to modify a substantial amount of
application in order to switch to other driver and/or database.

Working With Databases 127

With JDBC in place the developers can develop Java data access applications without having
to learn and use proprietary APIs provided by different RDBMS. The developer only needs to
learn JDBC and then data access applications can be developed conveniently that can access
different RDBMS and/or using different JDBC drivers.

Although relational databases are most common databases, JDBC can be used with any kind
of database. The main reason behind this is JDBC concepts common database functions into a
set of common classes and methods. Database specific code is contained in a code library,
which is called as a driver library. With the driver library for a database, JDBC API can be
used to send commands to the database and extract data from the database.

Types Of JDBC Drivers

Connection with an application to a database server using a database driver can be done in
the following four ways:

JDBC Type 1 - JDBC-ODBC Driver

Type 1 drivers act as a bridge between JDBC and the ODBC database connectivity
mechanism.

The JDBC-ODBC bridge uses standard ODBC drivers to provide JDBC access to database
tables. The JDBC-ODBC bridge requires that native ODBC libraries, drivers and their
required support files be installed and configured on each client machine which employs this
driver.

This driver delegates the work of data access to ODBC API. They are the slowest database
access API of all, due to the multiple levels of translation that have to occur.

JDBC Type 2 - Java Native Interface Driver

They mainly use the Java Native Interface [JNI] to translate calls to the local database API.

They also provide Java wrapper classes that are invoked using JDBC drivers.

Type 2 drivers are usually faster than the Type 1 drivers. Like Type 1 drivers, Type 2 drivers
also require native database client libraries to be installed and configured on all client
machines.

128 Java EE 6 Server Programming For Professionals

JDBC Type 3 - Java Network Protocol Driver

They are written in pure Java and use a vendor independent network protocol to
communicate with JDBC middleware placed on a server on the network. Middleware placed
on the server then translates the network database requests to database specific function calls.

Type 3 drivers are a more flexible JDBC solution as they do not require any native database
libraries on the client and can connect to many different databases on a server placed on a
network.

Type 3 drivers do not require any installation on the client side for deployment purpose over
the Internet. Type 3 drivers offer an application the ability to transparently access different
types of databases.

JDBC Type 4 - Java Database Protocol Driver

They are also written in pure Java and implement a database protocol such as Oracle's
SQL*NET, to communicate directly with the Oracle. They are the most efficient among all
driver types and are most commonly used.

SUN encourages developing and using type 4 drivers in Java for data access applications.

Type 4 drivers do not require any native database libraries to be loaded on the client and can
be deployed over the Internet.

Unlike Type 3 drivers, if the backend database changes, a new Type driver must be
purchased and deployed. However, as Type 4 drivers communicate directly with the
database engine and do not use middleware or a native library, they are the fastest JDBC
drivers available.

One drawback of Type 4 drivers is that they are database specific.

Type 4 drivers usually exhibit the best data access performance, being bound to a specifc
database.

Which Driver To Choose From?

A question arises as to which is the right type of driver to be used for an application?

Among all the above listed drivers, selection of the right type of driver depends on the
requirement of a specific project.

Working With Databases 129

In terms of cost if Type 3 or Type 4 drivers are expensive then Type 1 and Type 2 drivers are
most suitable as they are usually available free but if the mechanisms for installing and
configuring software on each client machine is not available then Type 1 and Type 2 drivers
can be opted out.

If price is not a matter, then there is an issue of which driver i.e. the Type 3 driver or the Type
4 driver to be used. So, evaluate the benefits of the flexibility and the interoperability
against each driver's performance. Type 3 drivers usually offers an application the ability to
clearly access different types of databases, where as Type 4 drivers usually excel in
performance if bound to a specific database.

Advantages Of JDBC

The following are the advantages of JDBC:

 While using JDBC, businesses are not limited to any proprietary architecture and can
proceed to use their installed databases and to access information, which may be stored
on the same or different DBMS

 The combination of Java API and the JDBC API results into the easy and economically
more efficient application development. JDBC overcomes with complexity of many data
access tasks. JDBC API is simple to learn, easy to deploy and inexpensive to maintain as
it simplifies enterprise development

 With the JDBC API, no configuration is required on the client side. It is a JDBC URL or a
DataSource object registered with a Java Naming and Directory Interface [JNDI] naming
service which defines all the information required to establish a connection with a driver
written in Java programming language

 JDBC API is available everywhere on the Java EE platform, which provides support for
Write Once, Run Anywhere paradigm as the developers can actually write database
application once and access data anywhere

 The JDBC API facilitates the development of sophisticated applications by providing
metadata access. This sophisticated applications are needed to recognize essential
facilities and capabilities of a database connection

JDBC Architecture

JDBC is an API specification developed by Sun Microsystems, which defines a uniform set of
rule using an interface for accessing different relational databases. JDBC forms a part of the
core of the Java platform. It is included in the Java SDK distribution.

130 Java EE 6 Server Programming For Professionals

The singular purpose of the JDBC API is to provide a resource to developers through which
they can issue SQL statements and process their results in a consistent, database-independent
manner.

JDBC defines classes and interfaces, which provides rich, object-oriented access to databases
and represent objects such as:

 Database connections
 SQL statements
 Result sets
 Database metadata
 Prepared statements
 Binary Large Objects [BLOBS]
 Character Large Objects [CLOBS]
 Callable statements
 Database drivers
 Driver manager

The JDBC API makes use of a driver manager, which is bound to database specific drivers.
This combination provides consistent, transparent, Db connectivity to all databases.

The JDBC driver manager is capable of supporting multiple concurrent drivers connected to
multiple heterogeneous databases and also verifies whether the driver used for accessing
each data source is correct or not.

A JDBC driver translates standard JDBC calls into a call native to a database, which enables
an application module to communicate with the database. It is this interpretation layer
[mapped to the appropriate driver] that provides database independent JDBC applications. If
the backend, database changes, then very little code modification is required along with the
replacement of the JDBC driver with the new Db driver.

The JDBC API is available in two packages namely:

 java.sql Package: This API is a core API that is compatible with any driver that uses JDBC
technology

 javax.sql Package: This package is an Optional Package API, which extends the
functionality of the JDBC API from a client-side API to a server-side API. It provides
scrollable result sets and cursor support

Working With Databases 131

The following are important JDBC classes, interfaces and exceptions in the java.sql package:
 Driver: Driver interface gives JDBC a launching point for database connectivity by

responding to DrvierManager connection requests and providing information about the
implementation in question

 DriverManager: DriverManager class actually keeps a list of classes that implement the
Driver interface. When an application is run, DriverManager loads all the drivers found
in the memory. When opening a connection to a database DriverManager selects the
most appropriate driver from the previously loaded drivers

 Connection: Connection interface represents a connection with a data source. This
interface can be used to retrieve information regarding the tables in the database to
which connection is opened

 Statement: Statement interface represents static SQL statement that can be used to
retrieve ResultSet object(s). The objective of Statement interface is to pass to the database
the SQL command for execution and to retrieve output results from the database in the
form of a ResultSet

RREEMMIINNDDEERR

Only one ResultSet can be open per statement at a time.

 ResultSet: ResultSet is a database result set generated from a currently executed SQL
statement. The data from the query is delivered in the form of a table. The rows of the
table are returned to the program in sequence

 RowSet: RowSet object extends ResultSet interface to add support for disconnected result
sets and thereby helps in retrieval of data completely

 PreparedStatement: PreparedStatement object is an SQL statement that is pre-compiled
and stored. This object can then be executed multiple times much more efficiently than
preparing and issuing the same statement each time it is needed. Therefore, it is a higher
performance alternative to Statement object

 CallableStatement: CallableStatement represents a stored procedure. It can be used to
execute stored procedures in a RDBMS that supports them

 DataSource: DataSource object abstracts a data source. This object can be used in place of
DriverManager to efficiently obtain data source connections

Accessing Database

To access and work with a database using JDBC, the following are the steps involved:

 Configuring JDBC Driver
 Creating A Database Connection

132 Java EE 6 Server Programming For Professionals

 Executing Queries
 Processing The Results
 Closing The Database Connection

Configuring JDBC Driver

The first step to establish a database connection using a JDBC driver involves loading the
specific driver class into the application's JVM. This makes the driver available later, when
required for opening the connection.

Class.forName(String).newInstance() is used to load the JDBC driver class:

The above code spec indicates that the JDBC driver from some JDBC vendor has to be loaded
into the application.

Class.forName() is a static method. This instructs the JVM to dynamically locate, load and
link the class specified to it as a parameter. newInstance() indicates that a new instance of the
current class should be created.

When the driver class is loaded into memory, it creates an instance of itself and registers with
java.sql.DriverManager class as an available database driver.

Creating A Database Connection

Once the driver is loaded, a database connection needs to be established. A database URL
identifies a database connection and notifies the driver manager about which driver and data
source is used.

Syntax: [For Database URL]

Here,

 jdbc indicates that JDBC is being used to establish the database connection
 SubProtocol is the name of the database the developer wants to connect to. Example:

mysql, oracle, odbc and so on
 SubName is typically a logical name or alias, which provides additional information on

how and where to connect

Working With Databases 133

HHIINNTT

Most database URLs closely follow standard syntax. However, the JDBC
database URL conventions are very flexible. They allow each driver to define the
information that should be included in its URL.

The following list represents the syntax for three common JDBC database URLs. Each type of
database driver requires different information within its URL:

JDBC Database URL Driver Used
MySQL jdbc:mysql://Server[:Port]/Database_Name MySQL Connector/J JDBC Driver
Oracle jdbc:oracle:thin:@Server:Port:Instance_Name Oracle Type 4 JDBC Driver
ODBC jdbc:odbc:Data_Source_Name JDBC-ODBC Bridge Driver

To create a database connection, the JDBC connection method getConnection() of
DriverManager is used as follows:

The method is passed a specially formatted URL that specifies the database. The URL used is
dependent upon the JDBC driver implemented. It always begins with jdbc: protocol, but the
rest depends upon the particular vendor. It returns a class that implements
java.sql.Connection interface.

Within the getConnection() method, DriverManager queries each registered driver until it
locates one that recognizes the specified database URL. Once the correct driver is located,
DriverManager uses it to create Connection object. While using JDBC, it is required to import
java.sql package as the driver manager, the connection objects and the other JDBC objects are
contained in this package.

RREEMMIINNDDEERR

To improve the performance of JDBC, define the database connection as an
instance variable then open the Db connection within the Servlet's init() method.
Then the database connection will be established only once i.e. when the Servlet
is first loaded and will be shared across all Db requests thereafter.

Executing Queries

After establishing database connection there should be some way to execute queries. There
are three ways of executing a query:

 Standard Statement
 Prepared Statement

134 Java EE 6 Server Programming For Professionals

 Callable Statement

Standard Statement

The simplest way to execute a query is to use java.sql.Statement class. To obtain a new
Statement object createStatement() of Connection object is used which is written as follows:

Statement objects are never instantiated directly.

A query that returns data can be executed using the executeQuery() method of Statement.
This method executes the statement and returns java.sql.ResultSet class that encapsulates the
retrieved data. The following code spec defines ResultSet object that encapsulates the
retrieved data:

HHIINNTT

For inserts, updates or deletes, use the executeUpdate() method. The
executeUpdate() method accepts an SQL statement that contains user
instructions to insert, update or delete table data.

Prepared Statement

A Prepared Statement is used for an SQL statement, which must be executed multiple times.
When a prepared statement is created, the SQL statement is sent to the database for
pre-compilation [if this is supported by the JDBC driver].

As they are precompiled, Prepared Statement executes much faster than standard SQL
statements.

Syntax:

HHIINNTT

The question marks in the PreparedStatement syntax represent dynamic query
parameters. These parameters can be changed each time the prepared
statement is called.

Working With Databases 135

Callable Statement

Callable Statement is used to execute SQL stored procedures. Methods are provided to
specify input parameters and retrieve return values.

Callable Statement object extends PreparedStatement and therefore, inherits its methods.

Syntax:

Processing The Results

ResultSet object is a cursor [i.e. a specific place in memory], which holds SQL query output.
next(), a method that belongs to ResultSet object, can be used to navigate across data rows in
the opened cursor one row at a time, starting from the topmost row. ResultSet object also has
many other methods for retrieving data from the current row. The getString() method and
the getObject() method are among the most frequently used for retrieving specific column
values from a data row.

Syntax:

RREEMMIINNDDEERR

ResultSet is linked to its parent Statement. Therefore, if a Statement is closed or
used to execute another query, any related ResultSet objects are closed
automatically.

When a call is made to the getConnection() method, DriverManager object queries each
registered driver, if it recognizes the URL. If a driver agrees, the driver manager uses that
driver to create Connection object.

Closing The Database Connection

Since database connections are a valuable application resource and consume a lot of system
resources to create, the DB connection should be closed only when all table data processing is
complete. Connection object has a built-in method, the close() methodfor this purpose.

136 Java EE 6 Server Programming For Professionals

In addition to closing the database connection, application code spec, should explicitly close
all Statement and ResultSet objects using their close() methods.

While it is true that the JVM's built-in garbage collection processes will eventually release
resources that are no longer active, it is always a good practice to manually release these
resources as soon as they are no longer useful.

Syntax:

The Customers GUI Example

This chapter demonstrates JDBC using the MySQL Database 5.1.44. Ensure that MySQL
database is downloaded and installed on the machine prior running the example.

MySQL provides connectivity to client applications developed in the Java EE 6 using a JDBC
driver named MySQL Connector/J.

MySQL Connector/J is a native Java driver that converts JDBC calls into the network
protocol used by the MySQL database. MySQL Connector/J is a Type 4 driver, which means
that MySQL Connector is pure Java code spec and communicates directly with the MySQL
server using the MySQL protocol.

MySQL Connector/J allows the developers working with Java EE 6, to build applications,
which interact with MySQL and connect all corporate data even in a heterogeneous
environment.

Download the MySQL Connector/J JDBC Driver from the website http://www.mysql.com.
At the time of writing this book, the latest version was MySQL Connector/J 5.1.10 [Available
in the Book CDROM].

The following example is the Customers G.U.I, which interacts with data stored in the
Customers table under the MySQL Db engine.

After the form is crafted it appears as shown in diagram 8.1.

Working With Databases 137

Diagram 8.1: Customers G.U.I

The form allows:

 Inserting data into the Customers table
 Updating data already existing in the Customers table
 Viewing of data available in the Customers table
 Deleting data from the Customers table

Functions declared in CustomerServlet.java:

JavaScript setMode()
setDelMode()
formDeleteValues()
setEditMode()

Form Details:

Form Name frmCustomers
Form Title Customer Form
Bound To bookshop.Customers

138 Java EE 6 Server Programming For Professionals

Data Fields:
Object Label Name Bound To
Hidden - - hidMode - -
Hidden - - hidSelDel - -
Hidden - - hidCustomerNo Customers.CustomerNo
TextBox First Name txtFirstName Customers.FirstName
TextBox Last Name txtLastName Customers.LastName
TextBox Address 1 txtAddress1 Customers.AddressLine1
TextBox Address 2 txtAddress2 Customers.AddressLine2
TextBox Phone Number txtPhoneNumber Customers.PhoneNumber
TextBox Mobile Number txtMobileNumber Customers.MobileNumber
TextBox Email Address txtEmailAddress Customers.EmailAddress
Checkbox - - chk [For CustomerNo] (Customers.CustomerNo)'s value

Data Controls:
Object Label Name Action
Button Save cmdSubmit - -
Button Cancel cmdCancel JavaScript:setMode()
Button Delete cmdDelete JavaScript:setDelMode()

First create a table named Customers that stores valid customer information.

The structure of the MySQL table is as follows:
Column Definition:
Column Name Data Type Width Description
CustomerNo Integer 11 Identity number of the customer. Is the primary key. Is

auto incremented
FirstName varchar 30 The first name of the customer
LastName varchar 30 The last name of the customer
AddressLine1 varchar 100 The address of the customer where it resides
AddressLine2 varchar 100 The address of the customer where it resides
PhoneNumber varchar 30 The phone number of the customer
MobileNumber varchar 30 The mobile number of the customer
EmailAddress varchar 100 The email address of the customer

The SQL statement used to create the Customers table is as follows:

Working With Databases 139

Before starting with the code spec of Customers GUI, let's create a Web application named
Customers. Follow the steps explained in Chapter 07: Working With Servlets to create a web
application.

It's a good practice to create a dedicated lib directory to hold all the required library files in the project
directory.

When New Project dialog box prompts for the Web Application name, enter the name and
also select the option Use Dedicated Folder for Storing Libraries as shown in diagram 8.2.1.

Diagram 8.2.1: Selecting the option for Dedicated folder for storing libraries

This creates a lib directory under the web application named Customers as shown in
diagram 8.2.2. The lib folder holds a few pre-defined library files created by NetBeans IDE
required that support Web Application development.

140 Java EE 6 Server Programming For Professionals

Diagram 8.2.2: A dedicated lib directory created for storing libraries

Adding MySQL Connector/J JAR File To The Web Application

Extract the contents of the downloaded MySQl Connector/J driver to a folder of choice.

Right-click Libraries directory and select Add JAR/Folder... as shown in diagram 8.3.1.

Diagram 8.3.1: Selecting Add Jar/Folder

Add JAR/Folder dialog box to choose the JAR files appears as shown in diagram 8.3.2.

Working With Databases 141

Diagram 8.3.2: Selecting MySQL Connector/J JAR file

Select mysql-connector-java-5.1.10-bin.jar file [from the directory, that holds the extracted
contents of the MySQL Connector/J driver] to add it to the project and choose the option

Copy to Libraries Folder as shown in diagram 8.3.2. Click .

The mysql-connector-java-5.1.10-bin.jar file is available in NetBeans IDE under the web
application's Libraries section as shown in diagram 8.3.3.1 as well as in the lib directory of
the web application as shown in diagram 8.3.3.2.

Diagram 8.3.3.1: JAR added in the Libraries
directory of the web application in NetBeans

Diagram 8.3.3.2: JAR added in the lib

[dedicated] directory of the web application

142 Java EE 6 Server Programming For Professionals

Next create a Servlet named CustomerServlet. Follow the steps as explained in Chapter 07:
Working With Servlets to create an annotated servlet.

Code spec: [CustomerServlet.java]

Working With Databases 143

144 Java EE 6 Server Programming For Professionals

Working With Databases 145

146 Java EE 6 Server Programming For Professionals

Working With Databases 147

Explanation:

java.sql package is used to connect to the MySQL database. java.sql package contains
majority of class objects used for database access.

The following interfaces or classes are imported:

 DriverManager
 Connection
 ResultSet
 Statement

Almost every database driver supports the components of this package.

Connection, ResultSet and Statement objects are declared, with the Connection and Statement
objects set to null.

The Connection object is an interface which defines a link to a database. The Connection
object is essentially a pipeline between the Java code spec and the database engine, which
exposes the database tables and their data to the Java code spec.

The Statement object is an interface that represents how application data requests are sent
from Java code spec to the database engine. Statement objects can hold ANSI SQL statements
compatible across all database systems.

The ResultSet object is an interface that represents a set of records retrieved from the
database. Different SQL statements including stored procedures, may return one or more
ResultSet objects.

A variable named query of type String is declared and its value is set to null.

Class.forName() is used to load the class into memory. It indicates that the JDBC driver from
some JDBC vendor has to be loaded into the application.

148 Java EE 6 Server Programming For Professionals

Class.forName() is a static method, which instructs the JVM to dynamically locate, load and
link to the class specified to it as a parameter. newInstance() indicates that a new instance of
the current class should be created.

Next, to connect to a database, create a JDBC Connection object. This acts as a factory for
Statement objects that provide the Java application the ability to submit SQL commands to
the database.

Creating a Connection involves a single call to the DriverManager object.

getConnection() is overloaded to accept a URL that encodes the username and password:

 The database url i.e. jdbc:mysql://localhost/bookshop
o jdbc indicates that JDBC is being used to establish the database connection
o mysql is the name of the MySQL database
o //localhost/bookshop is the path to the database

 localhost is the name of the host where MySQL resides
 bookshop is the name of the database, which holds tables, views and so on

 The username of the MySQL user i.e. root
 The password of the MySQL user i.e. 123456

RREEMMIINNDDEERR

DriverManager is a container for all registered drivers. In order to obtain the
correct Connection object, DriverManager needs to be informed about which
driver it should use and to which database it should connect. This information is
encapsulated in a Database URL.

This application allows deleting, updating and inserting customer details. Hence to identify
the mode of operation, a hidden form field called hidMode is used through out to determine
the operation mode i.e. D for Delete, U for Update and I for Insert.

Working With Databases 149

It is determined if the hidden data field hidMode holds the value D to ensure that the form is
in delete mode, which happens when the user has chosen the desired records for deletion
using checkboxes and clicked .

A Statement object is spawned using a valid Connection object by invoking
createStatement().

Once a valid Statement object is spawned, execute(), executeQuery() or executeUpdate() can
be used to perform SQL actions.

executeUpdate() is normally used for SQL statements that do not return data from the
database. This includes UPDATE, DELETE, INSERT and ALTER statements.

executeUpdate() will typically return an integer which indicates the number of rows affected
by the UPDATE, DELETE and INSERT commands. For other SQL statements,
executeUpdate() returns the value 0 which indicates successful execution of the SQL
statement.

The DELETE SQL query is passed to executeUpdate() for execution.

The records are deleted based on the following WHERE clause:

hidSelDel is populated in the HTML form using JavaScript. This hidden variable holds a list
of comma-separated values [i.e. one or more CustomerNo's]. This is therefore passed to the
WHERE condition using the IN operator which accepts multiple comma-separated values for
deletion.

sendRedirect() of the HttpServletResponse interface is used to send a temporary redirect
response to the user using the specified redirect location URL. Here the same form is served
again to reflect the record deletion.

If the delete operation fails, then the catch block takes care of it by displaying a user-
generated message along with the server-generated error message.

150 Java EE 6 Server Programming For Professionals

It is determined if the hidden data field hidMode holds the value U to ensure that the form is
in update mode, which happens when the user has edited a desired record and clicked

.

The UPDATE SQL query is passed to executeUpdate() for execution.

Finally, the same form is served again to reflect the updated records.

If the update operation fails, then the catch block takes care of it by displaying a user-
generated message along with the server-generated error message.

Working With Databases 151

It is determined if the hidden data field hidMode holds the value I to ensure that the form is
in insert mode, which happens when the user has added a new record and clicked .

The variables named firstName, lastName, address1, address2, phone, mobile and email of
type String are declared and populated with the values entered by the user in the form.

It is determined if the length of the values held by the variables i.e. firstName, lastName,
address1, address2, phone, mobile and email is more than zero i.e. the textboxes are not left
empty.

If this is true, then a valid INSERT Statement is passed to executeUpdate() for execution.

If this is false, then a user defined error message is displayed stating that the customer details
cannot be left blank.

Finally, the same form is served again to reflect the updated records.

If the insert operation fails, then the catch block takes care of it by displaying a user-
generated message along with the server-generated error message.

This application uses JavaScript for clearing the contents of the form and to allow the edit
and delete operations. In case of the edit operation, the values are picked up from the HTML
table and populated in the appropriate textboxes. In case of the delete operation, a comma-
separated string holding the Customer numbers of the records chosen for deletion are made
available to the Servlet for the actual record deletion.

setMode() of JavaScript is called when is clicked. setMode() clears the form fields.

152 Java EE 6 Server Programming For Professionals

setDelMode() of JavaScript is called when is clicked. setMode() performs the
following operations:

 Switches the form mode to Delete. This is done, by setting the value of hidden variable
named hidMode to D. This variable will be used to understand the mode in which the
form is and accordingly perform appropriate database operation

 Calls a user-defined function formDeleteValues() with a parameter that when returned
holds a list of CustomerNos for deletion. This function generates a string of comma-
separated Identities of the records selected for deletion. If no records are selected, a
message indicates the same

formDeleteValues() is called to create a list of records that are selected for being deleted. This
list holds the Identity numbers of the records in a comma separated format. This function:

 Declares a string variable selValues and initializes it with an empty string
 Traverses through all the form elements
 On every iteration:

o Verifies whether the form element is a checkbox
o Verifies whether the checkbox is checked
o Generates [and appends on every iteration] a string to hold the records [in form of

Customer IDentities] selected for deletion in a comma-separated fashion in a string
variable selValues

 Verifies whether the variable selValues [after the traversing is done] holds any value [the
comma-separated string], if false:
o Displays a message informing the user to choose records

Working With Databases 153

o If true, removes the last comma from the string which contains comma-separated
identities for deletion

o Submits the form

setEditMode() accepts parameters [The column values available on the Customers GRID] and
transfers the same to the form fields [usually textboxes] on the Customer Form for editing. It
is called when a record is selected for modification and performs the following operations:

 Transfers the value held by the first parameter to the hidden variable [hidCustomerNo]
 Transfers the value held by the second, third, fourth, fifth, sixth and seventh parameter to

appropriate form fields thus making it available for modification
 Switches the form mode to Update. This is done, by setting the value of hidden variable

named hidMode to U. This variable will be used to understand the mode in which the
form is and accordingly perform appropriate database operation

An HTML form is initialized, which submits the data captured by the form for the
processing. Since the same file processes the data captured by the form, the ACTION
attribute of the HTML <FORM> element points to it.

The following hidden variables are declared using the HTML <INPUT> element:
 hidMode: Is used to determine the form mode. Holds 'I' for Insert, 'U' for Update and 'D'

for Delete. It holds the default value as 'I' when the page is rendered for the first time
 hidSelDel: Holds the customer identities for identifying records which have been selected

for deletion
 hidCustomerNo: Holds the Customer Identity for the update operation

154 Java EE 6 Server Programming For Professionals

HTML elements follow for generating the form fields such as First Name, Last name,
Address 1, Address 2, Phone Number, Mobile Number and Email Address and buttons such
as Save and Cancel as shown in diagram 8.4.1.

Diagram 8.4.1: HTML elements generating form fields

Working With Databases 155

A ResultSet named rs is declared, which holds the value returned by executeQuery(), which
in turn holds the SELECT SQL statement. It provides access to the records available in the
Customers table that have been extracted from the database. These records are displayed in a
tabular form [GRID] as shown in diagram 8.4.2.

Diagram 8.4.2

If the SQL query retrieves any records the following operations are performed:

 HTML code spec follows for the creation of button with its onClick event set to
call a function named setDelMode()

 A tabular layout is created using pure HTML <TABLE> element to hold the records
retrieved. This is done using a WHILE loop, which traverses through the records
retrieved from the table via the SQL query created earlier. ResultSet reads one row at a
time, beginning from the first row to the last row. next() attempts to iterate to the next
row in the ResultSet and returns false if the end of the ResultSet is encountered

156 Java EE 6 Server Programming For Professionals

WWAARRNNIINNGG

A ResultSet will always point to before the first row and therefore, next() has to
be used to access data.

 Form fields as shown in diagram 8.4.2 are linked to the function setEditMode(). This
function is responsible for populating the form fields when a record is clicked from the
tabular layout [GRID]. The data is retrieved using getString() from the database.
getString() extracts the data using column names

RREEMMIINNDDEERR

The ResultSet object has getter for all Java data types. The database driver tries
to translate the SQL data type to the requested Java data type. Each of these
methods is overloaded to accept either a column index or a column name.
Columns are numbered from left to right and the first column is always number 1.
If the column name is used, then the name is case insensitive regardless of the
underlying database. Extracting data by column name makes code easier to read.

Modifying index.jsp

Modify the default index.jsp [to invoke the servlet CustomerServlet] which NetBeans creates
as a part of the web application.

Code spec: [index.jsp]

Once the files are ready and placed appropriately the deployment can begin. Compile and
build the Web application.

Run the compiled web application.

Working With Databases 157

WWAARRNNIINNGG

In this example, MySQL is assumed to reside on the same machine, which holds
the JVM. Hence, the URL of the connection holds localhost.

If the connection fails, then ensure that the host file holds a mapping entry
between localhost and 127.0.0.1.

Diagram 8.4.3: Running the compile web application

By default, the Customer form is in Insert Mode.

Populate the textboxes in the Customer form as shown in diagram 8.4.4.

158 Java EE 6 Server Programming For Professionals

Diagram 8.4.4: Inserting records in the Customer Form

Click . The record is added to the database and the same is displayed in the tabular
GRID below as shown in diagram 8.4.5.

Diagram 8.4.5: Records added and the same viewed in the GRID

To update a particular record, take the mouse over that record and click on it as shown in
diagram 8.4.6.

Working With Databases 159

Diagram 8.4.6: Mouse over the record to update the record

The pointer of the mouse changes if moved over the records. Click once and the textboxes in
the Customer form are populated with that particular record as shown in diagram 8.4.7.

Diagram 8.4.7: Record in updation mode in the Customer Form

160 Java EE 6 Server Programming For Professionals

Make the required changes and click . The record is updated in the database and the
same is reflected in the tabular GRID below as shown in diagram 8.4.8.

Diagram 8.4.8: Updated record in the Customer Form

To delete a particular record(s), switch on the checkbox available next to the record to be
deleted as shown in diagram 8.4.9.

Diagram 8.4.9: Check box is ticked for deletion

Working With Databases 161

Click . The record is deleted from the database and the same is also reflected in the
tabular GRID below as shown in diagram 8.4.10.

Diagram 8.4.10: Record deleted from the Customer Form

The Book CDROM holds the complete application source code built using the NetBeans IDE
for the following applications:

 Codespecs / Section 2 / Chapter08_Cds / Customers

The web application can be directly used by making appropriate changes [MySQL -
username/password in the Servlet] and then compiling, building and executing it.

